Section

26 MULTI-FINGER CALIPER AND PIPE TALLY

The Warrior Logging Software supports imaging tools that include a wide range of multi-arm or multi-finger caliper tools supplied by different manufacturers such as Sondex, Hotwell, Probe, Katwell, GoWell, and Spartek Systems. The various caliper tools may have from 12 to 60 fingers. The Warrior software presents the readings from the fingers as radii or diameters. In addition, many presentations will also present a 3 dimensional image of the caliper log.

One of the problems with multi-finger caliper tools is when the tool is not centered in the wellbore, the readings of the diameters measured may not be correct. With the tool not centered, the diameters perpendicular to the high / low axis will read smaller than actual size, showing an eccentric pipe. Warrior Software has a Caliper Processing package available as a supplement to the Warrior 8 Software that corrects the eccentric caliper readings in real time. The Caliper Processing software would replace the third party software that is normally used after the well is logged as post processing in the office or processing center.

The example shown in Fig. 26.1 shows a log pass with uncorrected caliper image on the left and a corrected caliper image on the right. Fig. 26.2 shows a cross-section image of the caliper readings. Fig. 26.3 shows a 3 dimensional image of the uncorrected and corrected caliper readings.

For more information about the Caliper Processing Software contact Scientific Data Systems.

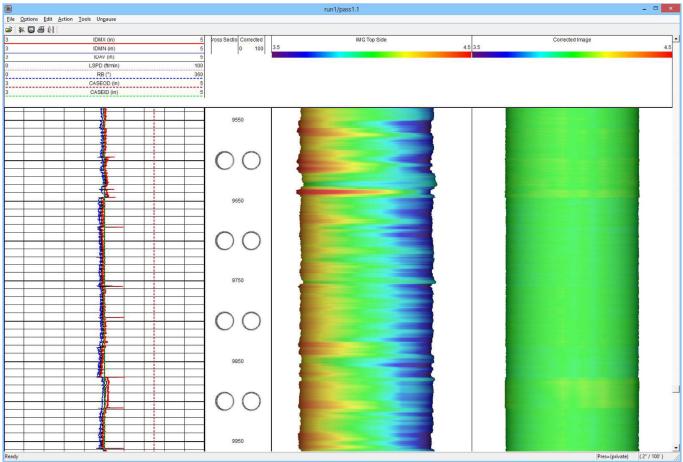


Fig. 26.1 Multi-finger Caliper Image Plot

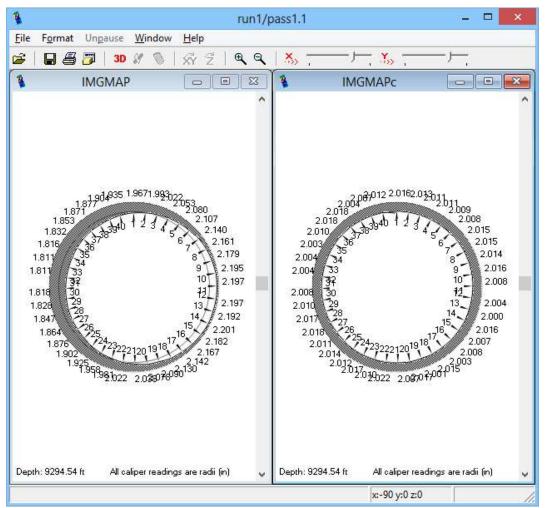


Fig. 26.2 Image map showing uncorrected and corrected caliper readings

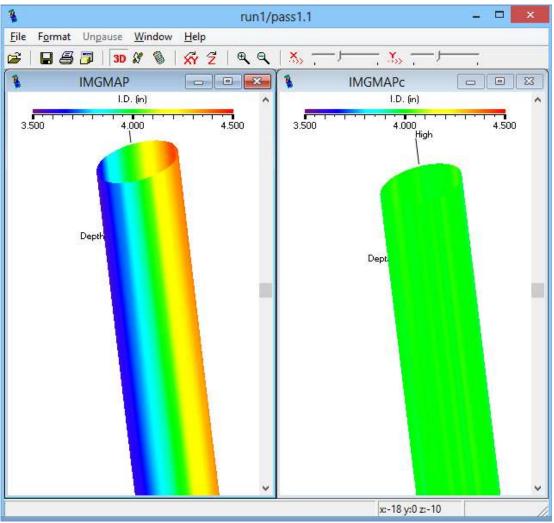


Fig. 26.3 3-D Image map showing uncorrected and corrected caliper readings

26.1 Pipe Tally Utility

The Warrior 8 software has an enhanced version of the Warrior Pipe Tally Utility. The utility provides a numerical table by joints of casing / tubing showing casing loss. In addition it provides capabilities for enhancing the log presentations.

The Pipe Tally Utility is accessed through the Warrior Database Utilities by clicking on the Pipe Tally selection button.

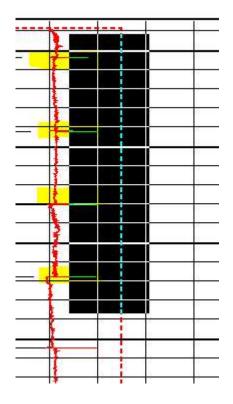
Data Export	Depth Correction
Export to LAS Format	Apply Linear Depth Shift to a Dataset
Export to LIS Format	Apply Linear Depth Shift to a Data Item
Export to ODBC Compatible Database	Data Management
Extract Pass(es) to New Database	Create an Alias for a Data Item
Export via Internet	Multiple Pass Automerge
Interpretation Tools	Edit Variables in a Dataset
Mathpack	Create Variables in a Dataset
XY Plot	Create Waveform Gate Curves
Tracer Interpretation	Create CCL Curve from Keyboard
Create Differential Curve	Delete Data from a Database
Create Total Dissolved Solids Curve	Undelete Data
Calculate Borehole Volume from Caliper	Rename a Data Item
Calculate Rxo/Rt & Rwa	Edit a Log Curve
Pipe Tally 🗲	Select Correlation Curves for Database
Curve Normalization	Data Import
Log Summary Generator	Read ASCII Data into Warrior
Setup Tools	Read LIS Data into Warrior
Calibrate Printer	Import ODBC Data into Warrior
Configuration Backup/Restore	Create Log Format from Dataset
Edit Logging Service Details	Import via Internet

Fig. 26.4 Warrior Database Utilities - Pipe Tally

26.1.1 Get Pipe Tally Data – Scan for Collars

When the Pipe Tally Utility is opened, there is no information present. The first step is to get the casing joints. If you click on the [Process] button, you will get the choice of getting the joints from a log pass or entering them from the keyboard. By clicking on [Get Joints from a Log Pass], multiple collars can be selected at one time with the mouse and the software will enter them into the table. If [Get Joints from Keyboard] is selected, the user must type in each collar position that he wants to use Fig. 26.5 Pipe Tally Utility – Process

	Warrior - Pipe Tally	Utility		×
File Edit Settin	igs Help			
<u>O</u> pen	Edit Process	Save	E	<u>xit</u>
# Top Leng	th Min RW Loss			
1.				


Get Jo	ints from a Log Pass
Get J	oints from Keyboard
Scan Log f	or Collars 🔜 Gradi
urve name lax collar length Jse mouse and ar o outline one or m lamed curve. Use esults to Joint Tat	'Accept' to add
ength helps treat	bursts as one
Julian Filot	nocopi

When getting joints from a log pass, any curve that indicates collars may be used, not just CCL. In the following example, since there is no CCL in the string, I will use the IDMXC curve. The maximum collar length would be set to the minimum length of a casing joint or longer than any hardware that might be in the well, normally 2 to 4 feet. When the [Start Plot] button is clicked, Interactive Plot will start. You will need to select the pass that you wish to process and to do a screen plot to see the pass. It is often advantageous to compress the scale of the plot to enable the user to select more collars at one time. To do this, click the Options choice from the Interactive Plot menu.

Start At	10110.00	
Stop At	8489.83	<< Maximize
Presentation File	xi40_3dCOR.prs	<< Browse
Vertical Scale	240	▼ (5" / 100')
English Depth	2400 2000	▲ glish Units
C Metric Depth	1200	etric Units
C Time	1000	er defined
C Other	600 500	
F Show tool posi	480	<u> ОК</u>

Fig. 26.6 Setting Vertical Scale to compress the viewed log pass

Click the Vertical Scale drop down and select a larger number to compress the scale. 600 or 1200 are good options. Using the mouse, draw a rectangle that catches the peaks of the curve that you are using as a CCL indicator.

Curver	name	idmxc
lax co	llar length	2.0 ft
Cnt: Rng: Min: Max: Avg:	4 collars, 3 8504.0 ft t 37.8 ft 38.3 ft 38.1 ft	3 joint(s) o 8618.2 ft
Sta	rt Plot	Accept
	eject	Done

Fig. 26.7 Capturing CCL indications in a log pass

The Scan Log for Collars window will show a summary of what you have just scanned. In this case, it shows 4 collars in the range of 8504.0 feet to 8618.2 feet and gives the minimum, maximum, and average lengths of the joints in that interval. If you click the [Reject] button, the summary is cleared and you may reselect the collars from the log pass. If you click the [Accept] button, the collars that have been selected will be entered automatically into the pipe tally table. You should continue down the log pass, selecting collars until the whole pass has been collars picked. When you are finished, click the [Done] button to close the Scan Log for Collars window.

At this point, it is a good idea to take a close look at the Pipe Tally table and look for problems with the collars that have been selected. Things that should be looked for are extra-long and extra-short joints.

		Warrior -	Pipe Tally	Utility	X
File E	dit S	ettings Help			
Ope	n	Edit	Process	Save	Exit
10 1_1_1		4.0 ft to 9283.8 ft.	Ma. 014	M	0 h 40 0 h
to Joini	LS, 0304	0 ft to 9203.0 ft.	Min. U. I ft	Max. 70.0	on Avg. 43.5 n
#	Тор	Length Min RW	Loss		
18 8	8504.0	38.3		1 9245.2	38.6
17 8	8542.3	38.0		9283.8	0.0
16 8	8580.3	37.8			
15 8	8618.1	36.9			
14 8	8655.0	76.8	1		
13 8	8731.8	11.4			
12 8	8743.2	39.4			
11 8	8782.6	37.6			
10 8	8820.2	38.1	1.5		
9 8	8858.3	38.3			
8 8	8896.5	37.3			
78	8933.9	74.0			
6 9	9007.8	49.9			
5 9	9057.8	76.2			
4 9	9134.0	0.1			
	9134.0	36.7			
3 3					

Fig. 26.8 Examine table for bad CCL selections

In the table shown in Fig. 2.5, there are long joints at joints 14, 7, and 2 and a .1 foot joint at joint 4. The long joints are probably caused by not having enough of an indication in the signal to pick the collar and the short joint is caused by selecting the same collar twice. The collars that have been selected twice can be eliminated by clicking on that collar in the table and then click on Edit -> Delete Selected Entries.

e Edit Settings Help		
O Heading Information	n <u>S</u> ave Exit	
Jc Delete Selected Entri	es Max: 76.8 ft Avg: 43.3 ft	
# Top Length Min RW I	.055	Warrior - Pipe Tally Utility
18 8504.0 38.3	1 9245.2 38.6	
17 8542.3 38.0	0 9283.8 0.0	
16 8580.3 37.8		
15 8618.1 36.9		(1 selected. Delete?
14 8655.0 76.8		
13 8731.8 11.4		
12 8743.2 39.4		
11 8782.6 37.6		
10 8820.2 38.1		Yes <u>N</u> o
9 8858.3 38.3		
8 8896.5 37.3		
7 8933.9 74.0		
6 9007.8 49.9 5 9057.8 76.2		
4 9134.0 0.1		
3 9134.0 36.7		
2 9170.7 74.5		

Fig. 26.9 Deleting erroneous entries from table

To correct the long joints, you would need to Process and Get Joints from a Log Pass again or in this case I will Get Joints from Keyboard.

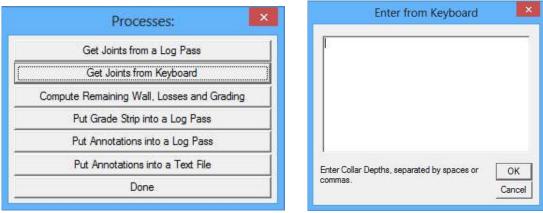


Fig. 26.10 Get Joints from Keyboard

After closely examining the log, I missed collars at 8695.3, 8966.1, and 9209.4. These depths will be entered into the window separated by spaces or commas as shown in Fig. 2.8.

Enter from Keyboard	×
8695.3, 8966.1, 9209.4	
Enter Collar Depths, separated by spaces or	ок
commas.	Cancel

Fig. 26.11 Process – Get Joints from Keyboard

The corrected table is now shown in Fig. 26.12

Warrior -	Pipe Tally Utility 🗕 🗖 🚺 🗙
<u>File Edit Settings H</u> elp	
· · · · · · · · · · · · · · · · · · ·	1777 A.C. 4
Open Edit	Process Save Exit
20 Joints, 8504.0 ft to 9283.8 ft.	Min: 11.4 ft Max: 76.3 ft Avg: 39.0 ft
# Top Length Min RW	
20 8504.0 38.3	3 9170.7 38.7
19 8542.3 38.0	2 9209.4 35.8
18 8580.3 37.8	1 9245.2 38.6
17 8618.1 36.9	0 9283.8 0.0
16 8655.0 40.3	
15 8695.3 36.5	2
14 8731.8 11.4	
13 8743.2 39.4	
12 8782.6 37.6	
11 8820.2 38.1	
10 8858.3 38.3	
9 8896.5 37.3	
8 8933.9 32.2	
7 8966.1 41.7	
6 9007.8 49.9	
F 00F7 0 70 0	
5 9057.8 76.3	

Fig 26.12 Corrected Pipe Tally Table

26.1.2 Edit Pipe Tally Settings

There are several things that should be done before continuing. The first is editing the table header information.

field/well/run/_plots_/_joi	nttbl_/tbl1 - 🗆 💌	Job Information
File Edit Settings Help O Heading Information 20 Jc Delete Selected Entries	Save Egit Max: 76.3 ft Avg: 39.0 ft	Company Well Field
# Top Length Min RW Loss 20 8504.0 38.3 19 8542.3 38.0 18 8580.3 37.8 17 8618.1 36.9 16 8655.0 40.3 15 8695.3 36.5 14 8731.8 11.4 13 8743.2 39.4 12 8782.6 37.6 11 820.2 38.1 10 8858.3 38.3 9 8896.5 37.3 8 893.9 32.2 7 8966.1 41.7 6 9007.8 49.9 5 9057.8 76.3 4 9134.0 36.7 36.7 36.3	3 9170.7 38.7 2 9209.4 35.8 1 9245.2 38.6 0 9283.8 0.0	County State Date Comments Cancel Get From Heading OK

Fig. 26.13 Edit Heading Information

If the Warrior Heading has already been completed and saved, that information can be brought into the Pipe Tally Header by clicking the [Get from Heading] button at the bottom of the Job Information window. If that heading information is not available, then the User should enter the data in the fields provided. The heading information is saved into the table by clicking the [OK] button.

	Job Information	×
Company	Big Bucks Oil Co.	_
Well	Gusher #5	
Field	Worthy	
County	Mermaid	
State	Atlantis	
Date	Nov. 11, 2012	
Comments	Example Table	^
		~
Cancel	Get From Heading	к

Fig. 26.14 Completed Job Heading Information

If grading to going to be applied to the log data, the grading options need to be set up before the casing thickness is scanned. Click on Settings -> Grading and options to bring up the options window. Fig. 26.15 Options and Grading

field/well/run/_plots_/_jointtbl_/tbl1 -	Options 🗾
Grading & options Egt Open Grading & options 20 Joints, 8504.0 ft to 9283.8 ft. Min: 11.4 ft.	Grading Parameters % Loss Symbol Color
# Top Length Min RW Loss 20 8504.0 38.3 3 9170.7 38.7 10 8540.0 30.0 2 9200.4 27.8	
Options 6	Options 💌
Grading Parameters % Loss Symbol 0 P 50 F 100 F 0 F	Grading Parameters % Loss Symbol Color 0 A A A 20 B B B B 40 C C C C 55 D D C C C 100 F D C
Count joints from top down	Count joints from top down
OK Cancel	OK Cancel

The grading is based on a percentage of loss. The User would normally setup between 2 and 6 grade levels. This may be as simple as 0% - 50% Passing (Green) and 50% - 100% Failing (Red). It could be something more complex, such as a letter grading A=0% -20% (Green), B=20%-40% (Blue), C=40%-55% (Yellow), D=55%-70% (Orange), and F=70%-100% (Red)

Fig. 26.16 Example Grading Scales

The colors assigned to the grading are used as a quick indication of the grading and can be shown both in some of the pipe tally tables and as a pattern strip in the log. The color for a given grade may be edited by clicking on the box located between the grade symbol and the grade color, defining the color and then clicking the [OK] button.

Fig. 26.16 Selecting Grading Colors

26.1.3 Remaining Wall Loss and Grading

Now that grading options have been set up, the next step is to have the software scan the log, computing the wall loss percentage and grading the casing joints. Click on [Process] to open the Process window. Click on the [Compute Remaining Wall, Losses and Grading] option.

f	ield/w	/ell/rur	/_plots	joint	tbl_	/tbl1	<u>aa</u> n 1	
ile	Edit S	Settings	Help					
Op	en	Ed	E	Process	ľ.	Save	11	Exit
0 Ini	ote 850	4.0.6.10.1	9283 8 4	Min: 11	4.6	Max: 76	3.6	Ava: 39.0 ft
.0 300	nis, 030		5205.0 H.	Mint. 1	.4 11	Max. 70.	JR /	4vg. 55.0 h
#	Тор	Length	Min RW	Loss				2
20	8504.0	38.3			3	9170.7	38.7	
19	8542.3	38.0			2	9209.4	35.8	(i)
18	8580.3	37.8			1	9245.2	38.6	(I
17	8618.1	36.9			0	9283.8	0.0	6 1
16	8655.0	40.3			7			1
15	8695.3	36.5						
14	8731.8	11.4	ļ.					
13	8743.2	39.4	i F					
12	8782.6	37.6						
11	8820.2	38.1						
10	8858.3	38.3						
9	8896.5	37.3						
8	8933.9	32.2						
7	8966.1	41.7						
6	9007.8	49.9						
5	9057.8	76.3						
. .								

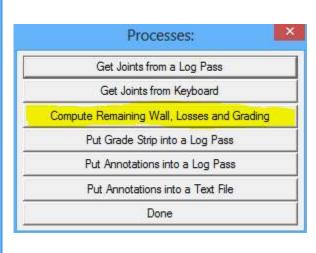


Fig. 26.17 Remaining Wall and Losses

There are two ways to process the remaining wall and losses. If the Warrior Caliper Processing software has been used, remaining wall has already been computed and that curve (MINRC – Minimum Remaining Corrected) can be used. The second method is to use the maximum diameter (which, depending upon the caliper eccentric could be appreciably off) and the casing OD and ID set up in Variables.

From the Compute Loss and Grading window, the User will first need to select which method that he wishes to use. And then, using the [<<Browse] button select the data item that he wished to use to process the log for losses.

ding
Setup Loss Grading
Edit Zoned Variables
< Browse
Begin Cancel

Fig. 26.18 Compute loss and Grading

Current Database	C:\ProgramData\Warrior\Da	ata\MFC2_W8.db	
Current Dataset	/field/well/run1/pass1.1/MI	NRC/1	
/field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas	s1.1/ID10/1 s1.1/ID09/1 s1.1/ID08/1 s1.1/ID07/1 s1.1/ID06/1	^	
/field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas	s1.1/ID04/1 s1.1/ID03/1 s1.1/ID02/1 s1.1/ID01/1		
/field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas /field/well/run1/pas	s1.1/RMXAC/1 s1.1/RMNAC/1 s1.1/IDAVC/1 s1.1/IDMXC/1		Databas
/field/well/run1/pas /field/well/run1/pas /field/well/run1/pas	s1.1/CTR_DIST/1 s1.1/CCLC/1	~	OK Cancel

Fig. 26.19 Selecting Data to Process for Losses

The Pipe Tally table will now be completed, showing the number of joints, the collar depth of each collar, the length of each joint, the minimum remaining wall in each joint, and the grade that has been given to each joint.

e	<u>E</u> dit <u>s</u>	Settings	<u>H</u> elp						
shoot because	en	Ed		Process		Save		Exit	
		18.905		Min: 11	1.4 ft	Max: 76	.3 ft Av	/g: 39.0	ft
#	Тор	and the second se	Min RW	Loss					
* 39-0A	8504.0	1 X 11/2	0.221	11% A		9170.7	38.7	0.231	8% A
	8542.3		0.224	10% A	2	9209.4	35.8	0.136	46% C
11.	8580.3		0.220	12% A		9245.2	38.6	0.220	12% A
-01244	8618.1	36.9	0.231	7% A	0	9283.8	0.0		
	8655.0	40.3	0.218	13% A					
- 0.722	8695.3	36.5	0.222	11% A					
14	8731.8	11.4	0.121	51% C					
13	8743.2	39.4	0.222	11% A					
12	8782.6	37.6	0.221	12% A					
11	8820.2	38.1	0.223	11% A					
10	8858.3	38.3	0.226	10% A					
9	8896.5	37.3	0.132	47% C					
8	8933.9	32.2	0.244	2% A					
7	8966.1	41.7	0.227	9% A					
6	9007.8	49.9	0.215	14% A					
5	9057.8	76.3	0.221	12% A					
	9134.0	36.7	0.222	11% A					

Fig. 26.20 Completed Pipe Tally Table

26.2 Multi-Finger Caliper Presentations

If the Warrior Caliper Processing software is being used, there are several additional curves or outputs that are created in addition to the standard logging outputs. These include, but are not restricted to IMGMAPC (corrected image map), IDMXC (corrected maximum diameter), IDMNC (corrected minimum diameter), IDAVC (corrected average diameter), MINRC (minimum remaining wall), and CTR_DIST (distance from center of tool to center of hole). These outputs can be added to presentations in the normal manner.

26.2.1 Pipe Tally Annotations and Grading

During the processing of the Pipe Tally table, there are two processes that will add data to the database. These are "Put Grade Strip into a Log Pass" and "Put Annotations into a Log Pass". While the information is added to the database, it is not plotted until it is added to a presentation format.

Processes:
Get Joints from a Log Pass
Get Joints from Keyboard
Compute Remaining Wall, Losses and Gradi
Put Grade Strip into a Log Pass
Put Annotations into a Log Pass
Put Annotations into a Text File
Done

Fig. 26.21 Additional Pipe Tally Processes

From Interactive Plot, with a log pass pulled up, edit the log format. Click on the [Add] button to add a new database item to the presentation.

File	e Layout	Object	Color Maps	Options			
	Open	Add	Change	Remove	Save	Exit	1
2	Maximum Diar	meter 3 VE	ELLOB 1	Calipe	er # 1	2.5	
2	Minimum Dian	meter 3	a	Calipe	er # 2		
2	Averane Dian	notor 3	2.38 c	FINK	202		

Fig. 26.22 Add a New Item to Presentation

To add the Pipe Tally Annotations to the presentation, the DB Item needs to be PTANN. This can be typed in or chosen from the [Current Pass] drop down list. The annotations can be placed in any track that is available, and the scales have no relevance in this case. The Presentation Type must be tabular and the Style needs to be Tabular by delta.

Data Source DB Item	PTANN		Style		•	Left	C Middle	C Right
Quick	Pick List Cum	ent pass			_			
C Variable 📀	Data						r	Delta 50
osition			Auto	C				
1	Left value	0	C None		.000		Tabular by inter	
Track # 1 -	→ Right value	100	0. 2	-	.0000	•	Tabular by delta	3
Presentation Type	_		What to sh	ow in s	cale	🔽 Lat	el 🔽 Uni	its 🔽 Range
Curve	C Pattern Strip					I♥ LaL		its it nange
• Tabular	Graphic Strip		Label - use of for multiple lin		e return		PT/	ANN
Variable Density	C Image 3D		tor moluple in	105				
C Signature	C Potato Plot							
								ОК

Fig. 26.23 Adding Pipe Tally Annotations

To add the grading strip, the DB item needs to be Grade. The presentation type needs to be a Pattern Strip. The color map needs to be Pipe Grade. This is a special color map that can only be edited from the pipe tally grading and options settings. It cannot be edited through the normal color map editing. The scales should be set from 1 to the number of grades that were set up in the Pipe Tally Options.

	D	efine Data Item		×
Data Source DB Item	Grade	Style		
	Data			
Position				
Track # 7	▲ Left value 1 ■ Right value 6	<u> </u>		
Presentation Type		What to show in scale	🔽 Label 🔽 Units 🔽 R	ange
C Curve	Pattern Strip Graphic Strip	Label - use camage return for multiple lines	Grade	
C Variable Density C Signature	C Image 3D C Potato Plot			
		Color map	Pipe Grade	ок
			c	ancel

Fig. 26.24 Adding Pipe Grade Strip

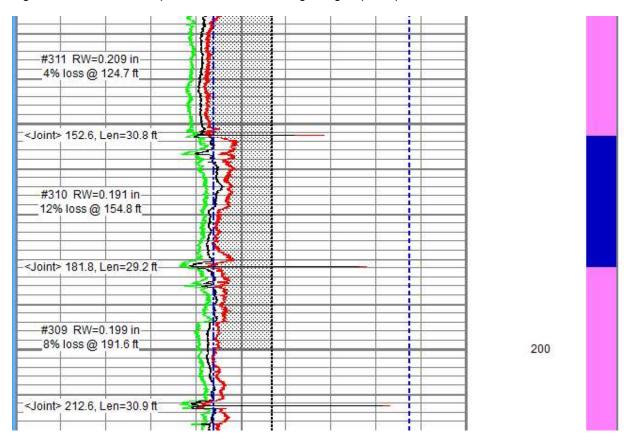


Fig. 26.25 shows an example with annotations and grading strip in a presentation.

26.2.2 Pipe Tally Tables in Plot Job

.

• When adding a pipe tally table to a plot job, there are several formats that the table may be printed under. These are *.WRF in the Warrior\Format folder. When adding the table to a Plot Job, the format that is to be used for printing the pipe tally table can be selected. Examples are shown below.

5	Define Graphics File	×
Туре	Joint Table	
Database	c:\programdata\wamor\data\mfc2_w8.db	
Dataset	field/well/run/_plots_/_jointtbl_/tbl1	<< Browse
Format	inttbl01.wrf	<< Browse
		ОК
		Cancel

Fig. 26.26 Selecting Pipe Tally Report format

₽					/field/wel	l/run/_plot	ts_/_job	s_/tables				-	• • ×
<u>E</u> ile į	Action	More Next	Previous H	lelp									
		Com Well:	panyBi Gi	g Buo usher	ks Oil Co. #5					Four		H	ere
1 [Joint			naining Wall			Join		Ren	naining	Wall	
	No.	Depth	Length	0.000	0.500 in		No.	Depth	Length	0.000	0.500	in	
	20	8504.0	38.3		0.221								
	19	8542.3	38.0		0.224								
	18	8580.3	37.8		0.220								
	17	8618.1	36.9		0.231								
	16	8655.0	40.3		0.218								
	15	8695.3	36.5		0.222								
[14	8731.8	11.4		0.121								
1 [13	8743.2	39.4		0.222								
	12	8782.6	37.6		0.221								
	11	8820.2	38.1		0.223								
	10	8858.3	38.3		0.226								
1 1	9	8896.5	37.3		0.132								
	8	8933.9	32.2		0.244								
	7	8966.1	41.7		0.227								
	6	9007.8	49.9		0.215								
1	5	9057.8	76.3		0.221								
	4	9134.0	36.7		0.222								
	3	9170.7	38.7		0.231								
	2	9209.4	35.8		0.136								
	1	9245.2	38.6		0.220								
	0	9283.8	0.0		0.000								
		Log [DateN	ov. 11	1, 2012					Shee	t: 1 of	1	
(1) joint t	able					ľ							

JNTTBL01.wrf

⊳				/field/well/	run/_plots_/_jobs_	tables		
le <u>A</u> c	tion <u>M</u> ore	Next Previous	Help					
	A			_		ALLY SU	WIWARY	
				Company		Dil Co.		
F2	V	T	0	Well	Gusher #5			
OU	1	1 A	er -	Field	Worthy			
10.04	<u> - L</u>	ogo H	S.	County	Mermaid		State	Atlantis
20	8504.0	38.3						
19	8542.3	38.0						
18	8580.3	37.8						
17	8618.1	36.9	0					
16	8655.0	40.3						
15	8695.3	36.5						
14	8731.8	11 4						
13	8743.2	39.4						
12	8782.6	37.6	2					
11	8820.2	38.1						
10	8858.3	38.3						
9	8896.5	37.3						
8	8933.9	32.2						
7	8966.1	41.7						
6	9007.8	49.9						
5	9057.8	76.3						
4	9134.0	36.7						
3	9170.7	38.7	-					
2	9209.4	35.8	2					
1	9245.2	38.6						
0	9283.8	0.0						
	6				3 3			5
	· · ·		2					
			2					
			2					
joint tab		et: 1 of 1				Log Date: No	ov. 11, 2012	

CCL.wrf

•

.

Remaining Wall Joint Remaining Wall (Remaining) 89% (Remaining) (Remaining) 38.3 89% (Remaining) (Remaining) 38.0 90% (Remaining) (Remaining) 37.8 88% (Remaining) (Remaining) 36.9 93% (Remaining) (Remaining) 40.3 87% (Remaining) (Remaining) 36.5 89% (Remaining) (Remaining) 39.4 89% (Remaining) (Remaining) 38.1 89% (Remaining) (Remaining) 38.3 90% (Remaining) (Remaining) 37.3 53% (Remaining) (Remaining) 32.2 98% (Remaining) (Remaining)	Company: Big Bucks O Well: Gusher #5	oil Co.	6.	Four Los	
42.5 0070 0 76.3 88%	Joint Remaining W (Remaining) No. Depth Length (Remaining) 20 8504.0 38.3 (Remaining) 19 8542.3 38.0 (Secondary) 18 8580.3 37.8 (Remaining) 17 8618.1 36.9 (Secondary) 16 8655.0 40.3 (Remaining) 15 8695.3 36.5 (Remaining) 14 8731.8 11.4 (Remaining) 13 8743.2 39.4 (Remaining) 12 8782.6 37.6 (Remaining) 13 8743.2 39.4 (Remaining) 14 8873.2 38.3 (Secondary) 10 8858.3 38.3 (Secondary) 9 8896.5 37.3 (Secondary) 18 8933.9 32.2 (Secondary) 7 8966.1 41.7 (Secondary) 6 9007.8 49.9 (Secondary) 5 </th <th>all No 39% 00% 39% 00% 38% 00% 33% 00% 39% 00% 39% 00% 39% 00% 39% 00% 39% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 39% 00% 38% 00% 39% 00% 21% 00% 39% 00% 22% 00%</th> <th></th> <th>Remaining (Remainin</th> <th></th>	all No 39% 00% 39% 00% 38% 00% 33% 00% 39% 00% 39% 00% 39% 00% 39% 00% 39% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 38% 00% 39% 00% 38% 00% 39% 00% 21% 00% 39% 00% 22% 00%		Remaining (Remainin	

2	action More	A)	6400	/field/well/ Company Well Field County	run/_plots_/_jobs PIPE 1 Big Bucks Gusher #5 Worthy Mermaid Comments	TALLY SU Oil Co.	JMMAF Sta		- Atlantis	
					E	xample Table					
			la atan	inch an D	anth I an ath Ma	Develo	Descenteres	and Comb			
20	8504.0	38.3	11%	umber, D	epth, Length, Ma	aximum Penetral	ion Percentage	and Sympo	N		-
19	8542.3	38.3	10%			3 3			-		-
18	8580.3	37.8	12%						-		-
17	8618.1	36.9	7%			0 9		1	0	2	-
16	8655.0	40.3	13%						-		1
15	8695.3	36.5	11%		· · · · ·	*			-	-	-
14	8731.8	114	51%			-			8	0	-
13	8743.2	39.4	11%						-		1
12	8782.6	37.6	12%						-		
11	8820.2	38.1	11%			3			1	1	
10	8858.3	38.3	10%								
9	8896.5	37.3	47%			8			1		
8	8933.9	32.2	2%						6		
7	8966.1	41.7	9%								
6	9007.8	49.9	14%			-					
5	9057.8	76.3	12%								
4	9134.0	36.7	11%								
3	9170.7	38.7	8%						8		
2	9209.4	35.8	46%								
1	9245.2	38.6	12%								

•

.

JNTGRADE.wcg

•

•	A	P		Well Field	Big Bucks (Gusher #5 Worthy				
		180	-	County	wernald		State	Auanus	
	JOINT CD	ASSIFICATI	ION			Comments			
0% 20% 40% 55% 70%	to 20% to 40% to 55% to 70% to 100%	A C D F	17 0 3 0 0			Example Table			
			Joint r	number, maximum	penetration perce	entage, and symbo	I		
20		A							
19									
18									
17		A	14 A						
16	PIPE TALLY SUMMA Company Big Bucks Oil Co. Well Gusher #5 Field Worthy JOINT CLASSIFICATION Comments arage Symbol # Joints to 20% A 17 to 100% D 0 Joint number, maximum penetration percentage, and symbol Example Table 11% A D D 13% A D D D 11% A D D D D								
15									
14				5					
13									
12									
11									
10									
9									
8									
7					-				
6		More Next Previous Help Comp Comp Well Field Count INT CLASSIFICATION # Joints Comp Count 20% A 17 Comp Comp 40% C 0 Count Count 10% A 17 Count Count 10% A 0 Count Count 11% A 0 Count Count 11% A 0 <							
5		PIP Company Big BL Well Gushe Field Worth County Merma Symbol # Joints A 17 A 17 A 17 B O Symbol # Joints A 17 A 0 Symbol # Joints A 17 A 0 B O B O Symbol # Joints A 0 B O B O B O B O Joint number, maximum penetratic A O A O B O B O A O A O A O A O A O A<	_		-				
4									
3	Action More Net Previous Help Action More Net Previous Help PIPE TALLY SUMMARY Company Big Bucks Oil Co. Well Gusher #5 Field Worthy Commons State Atlantis JOINT CLASSIFICATION Comments Range Symbol # Joints 0% to 20% 0 0 0% to 100% 0 0 0 11% A 11% A 0 11% A 0 11% A 0 <t< td=""><td></td></t<>								
2			<u> </u>	-					
	12%	A							

MAC.wrf

	A	A	Ber		PIPE TALLY SUMMARY Company Big Bucks Oil Co. Well Gusher #5 Field Worthy County Mermaid State Atlanti								
	JOINT CL	ASSIEICA	TION	-	County	Weimald	Comments	Otate	Adamas				
-	Range		Symbol				Continents						
0	% to 20%		A										
	0% to 40%		H										
	0% to 55% 5% to 70%						Example Table	Э					
	% to 100%		F										
	00% to 0%	-											
	-		Joint nu	umber, [Depth, Length, Ma	ximum Penetrati	on Percentage, a	and Symbol					
20	8504.0	38.3	11%	Λ									
19	8542.3	38.0	10%	A	1. K.								
18	8580.3	37.8	12%	Com Well Field Cou mool A Cou mool A Cou N mool A Cou N mool A Cou N mool A Cou N mool A Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M M M Cou N M M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N M M Cou N Cou N M Cou N Cou N M Cou N Cou N N M C N N C N N N N N N N N N N N N N									
17	8618.1	36.9	7%										
16	8655.0	40.3	13%										
15	8695.3	36.5	11%		1								
14	8731.8	11.4	51%		12								
13	8743.2	39.4	11%										
12	8782.6	37.6	12%										
11	8820.2	38.1	11%										
10	8858.3	38.3	10%										
9	8896.5	37.3	47%										
8	8933.9	32.2											
7	8966.1	41.7											
6	9007.8	49.9	14%										
5	9057.8	76.3	12%										
4	9134.0	36.7	11%		8								
3	9170.7	38.7	8%										
	9209.4	35.8	46%										
2	9245.2	38.6											

Fig. 26.27 grading examples

26.2.3 Borehole Presentations

The Borehole Presentation Window, available in some presentations, has been enhanced with the ability to show two image map presentations. To show the second image map, click on the "Window" menu option and then select "Clone".

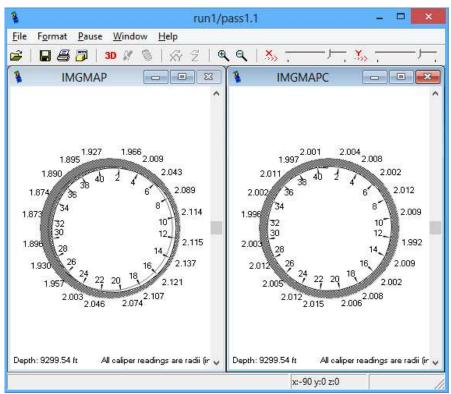


Fig. 26.28 Setting Borehole Image Presentation for two Images

Once the two images are cloned they will be the same image. By clicking one of the images and then clicking on the "Options" icon, as shown in fig. 3.1, the second image can be set to be a corrected caliper array image IMGMAPC. Either image can be set to either a 2-dimensional or 3-dimensional presentation.

What to plot	How to plot
Curve setup Caliper Array IMGMARC Calipers 40 High Caliper MAP1 (Curve containing ID of caliper on high side) Other curves for 2D display Add Remove	Plot range (height of diagram) 0.01 ft - 12 samples/ft Undersample 1
Color Size (in) Opacity(%) ✓ Calipers 2D color 100 ✓ Casing I.D. ■ 4.0000 50	⊂ Simulate Outside Diameter (2D mode only)
Image: Casing 0.D. Image: Minimal diameter 4.5000 50 Image: Minimal diameter Image: Minimal diameter 13.5000 50 Edit Variables Image: Minimal diameter Image: Minimal diameter 10.5000	Color Maps BHimage
	Plot options Image: Caliper readings are radii Imag
Plot resolution High Low 200	Drawing reference Casing ID OD C BOREID +/- bounds
Zoom 140 - Botate 0 -	More Options Set to Defaults Cancel OK

Fig. 26.29 Setting Corrected Image for Second Borehole Presentation

clicking on the "Options" icon, as shown in fig. 3.1, the second image can be set to be a corrected caliper array image IMGMAPC. Either image can be set to either a 2-dimensional or 3-dimensional presentation.

What to plot	How to plot
Curve setup Caliper Array MGMAPC Calipers High Caliper MAP1 (Curve containing ID of caliper on high side) Other curves for 2D display Add Remove	Plot range (height of diagram) 0.01 ft - 12 samples/ft Undersample 1
Color Size (in) Opacity(%) ✓ Calipers 2D color 100 ✓ Casing I.D. 4.0000 50	Simulate Outside Diameter (2D mode only) Simulate OD as Caliper + (Real OD - Real ID) Caliper start 1 🛨 Caliper stop 1 💼
	Color Maps BHImage
Tool O.D.	Plot options Image: Caliper readings are radii Image: Caliper radii
Plot resolution High Low 200	Casing ID OD C BOREID +/- bounds
Zoom 140 🛨 Rotate 0 🛨	More Options Set to Defaults Cancel OK

Fig. 26.30 Setting Corrected Image for Second Borehole Presentation

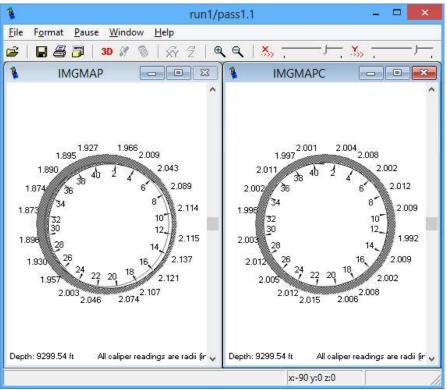


Fig. 26.31 Showing Caliper Array Image and Corrected Image

26.2.4 Multi-Finger Presentations

In previous versions of Warrior software, an array of curves, such as arm radii, each had to be plotted individually. This meant that if a scale change was required each individual arm had to be rescaled. Warrior 8 allows the User to plot a list of curves as a single DB item. The presentation shown if fig.3.4.1 shows a 40 arm caliper presentation with arm R01 plotted from 2.4375 to 4.9375. Each additional arm is plotted with the scales set to .0625 less so that arm R40 is plotted from 0 to 2.5.

In this example, I will remove every caliper arm curve as shown in Fig. 3.4.2. Next I will click the [ADD] button and select the List type of Data Source for the DB item. Click the [Curve List Properties] button to bring up the Curve List Editor Window as shown in Fig. 3.4.4.

C:\program	data\war	rior\form	nat\40armca	al4		×
<u>File Layout C</u>	bject <u>C</u> o	lor <mark>M</mark> aps	<u>Options</u>			
Open	Add	Change	<u>R</u> emove	<u>S</u> ave	Exit	
3 MAX ID		2.4375	R01		4.9375	+
3 MIN ID	5	2.375	R02	X	4.875	
3 NOM CASE ID	5		R03			
0 MINR	0.5		R04	5		
IDMN	77		R05	2		
	00000		R06	6		
			R07			
			ROB	Щ.		
			R09	9		
			R10	5		
			R11			
			R12	Y		
			R13	č.		
			R14		3	
			R15	<u>2</u>		
		3	R16 R17			
			R17 R18	21		
			R io	8		*
	DEPTH	1				ĺ –
		1				Ē
1	5		4)		

Fig. 26.32 Typical 40 arm caliper presentation

C:\p	rogra	mdata∖	warrior\forr	nat\40arm	cal4	
<u>File</u>	ayout	Object	<u>C</u> olor Maps	<u>Options</u>		
Oper		<u>A</u> dd	Change	<u>H</u> emove	Save	Exit
3 3 3 0	MAX ID MIN ID M CASE MINR IDMN	5 ID 5 0.5	CCL3			
		[DEPTH]			
	$(\mathbf{\hat{p}})$		5	Ċ	1)	

Fig. 26.33 Presentation with all caliper arm curves removed

Data Source — Name	Γ			Style			
C Variable	C Data	নি List					
Track #	1	Left value Right value	0	-	urve List Propert	ies	
Presentation Type	e			What to show in scale	🔽 Label	🔽 Units	🔽 Range
				Label - use carriage return for multiple lines			
					4		ОК
							Cance

Fig. 26.34 Selected List type Data Source DB Item

C	urve List Editor	×
How to create curve list (* List of related names such as (CAL1,CAL2,CALn) Enter curve name with wildcard. For example, R0* will select R01-R40. R* will select R01-R40 plus any other curve that starts with R.	For all curves black Thickness Zonable Scales Wrap Dot Logarithmic Dash Dash Dot	
ADPTH AVRD CCLC CTR_DIST DEVI ECCE	For each curve Offset Every nth curve Use this color for curve OK OK	Cancel

Fig. 26.35 Curve List Editor Window

On the left side of the Curve List Editor Window is a drop down list of all the available outputs. Select the first curve in the list of curves that you would like to plot. There is a brief example that describes how to pick the curve shown in the "How to create curve list" box. When the curve is selected, the "list identifier" will be filled out. The "For all curves" box of the Curve List Editor Window is used the same as the style box of a normal curve.

	Curve List Editor		
How to create curve list • List of related names such as (CAL1,CAL2,CALn) Enter curve name with wildcard. For example, R0* will select R01-R40. R* will select R01-R40 plus any other curve that starts with R. RC0*	For all curves black Conable Scales Wrap Logarithmic		Solid Dot Dash Dash Dot
Name ADPTH AVRD CCLC CTR_DIST DEVI ECCE	For each curve Offset Every nth curve Use this color	0.0625 between each c 10 ▲ for curve ■ red	urve
ELLIP	*		OK Cancel

Fig. 26.36 Select List of Curves

The "For each curve" box provides some additional settings. When plotting multiple curves, it is normal to offset each curve by a small amount so that the curves are not stacked on top of each other and are distinguishable. Another method of distinguishing multiple curves is to make one of the curves a different color every so often. This box provides the User those capabilities with the multiple curve lists. When the settings have been selected, click [OK] to close the Curve List Editor window. Note that the scales for the first curve and every nth curve will automatically be shown.

The final settings for defining the list of curves are giving the list a name. This can be anything to identify the list, such as Calipers, R0 thru R40, or whatever the User decides is appropriate. The track and the scales also need to be set. The scales will be the scale for all of the curves, but only the first curve and every nth curve will the scales be shown on the log insert. When complete, click [OK] to save the curve definition. Then click [Save] to save the edited plot.

Defir	ne Data Item	×
Data Source Name Calipers	Style	
Position Track # 4 × Right value 2.25 Presentation Type	Curve List Properties	nge JK
	Car	ncel

Fig. 26.37 Setting Track and Scales and giving list of curves a name

Ont	tionr F	dit Action	Tools 11	0031/6							run1,	pass1	1.1																			-	
			Tools 0	uRoose																													
200		4(1)	MA)	(ID (in)			5		T											Caline	ers (in)	10											
				I ID (in)			5		1.75	RC01	2.25	1.	75	RC	10	22	5	1.7		RC2		2.25	1	1.75		RC3	0	2.2	5	1.7	5	RC40	3
_				ASE ID (in)			5		1			1 1-					-	-	-		-		4				-		-	<u> </u>	-		
1						E E			T	22	2 7	1 1	2 1	1 1	11	5	6.5	11	13	2	2 3	2.1	2 2	IL	£	1	1 1	E.		Ŧ	II	11	
								9500		tt	f f		11	1	11	ŧ	ŧŧ	11		1	1	1	11	11	1	11	11		ŧŧ	1	11		
					_		_			44		1	11	1	11	ş	11	11	1	1			\$ \$	\$ \$	\$	11	11	1	11	1	11	11	
-			_	-	-	-	_			- 11		11	11	11	11	2	22	22	11	1	1	11	11	11	4.	11	11	1	23	2	11		
+					_		_			11	11		11	1	1		11	11	11	1	1	11	11	11	1	tt	11	1	11	1	11	11	
+					-	-					11		11	1	11		11	11	11		1	11	11	11	ł		11	11	11	1		11	
+	-				-	-	-	9550		11]]	}	11	1	1	ł	11	11		1	3	} }	£}	11	1		11	ŧ ŧ	11	1	11		
1				1						11	11	11	11	1	1	17	11	27	Ѓ́,	11	11	11	11	11	1	17	11	17	33	7	17	1	
										11	11	{ {	11	F	ti	1	11	11	1	1	I	11	11	11	1	[]	1	11	1	1	11	11	
										11	11	11	11	1	11	1	11	1			1	11	11	11	i	11	11	11	11	1	11	ŧ ŧ	
			-	F				9600		44	\$ }	1+	11	4	11	1 1	++	-	-1-	11	1 1	\$ 7	44	**	3	1	4	4	\$ \$	1	1	H	-
-				2		-	_	100000		11	11	łł	11	1	1 :		11	11	1]]	1 1	11	{ ł	11	3	21	11	11	1	\$	11	11	
+						-				11	11	11	11	1		1	11	1	1		1	11	11	< 1	1	{ {	1	ţţ	11	1	11	11	
+				2	-	-	_			11	H	11	13	1	1 2		11	11	1	11	1	11	22	11	1	11	1	11	11	1	22	2 2	
+				SE -						$ \mathbf{D}$	13	33	13	f	11	13	33			J	11	11	11	73	3.	33	ALL ALL	11	31	Ы.	11]]	
t	-				-	-	_	9650		÷ f	4 4	1	11	1	11	1	55	\$\$	1	4	11	3	ſſ	11	1		1	1	£ £	1	\$ \$	ŧ.	
										11	111	II	H	F F	11	5	ŝŝ	ff	ţţ	1	11	2	ŧŧ.	1 t	ŧι	f	ξĘ	1 E	ŝŝ	1	ŧ	1	
										11			11	11	H	1	11	11	11		11	1	11	11	1	11	11	1	11	11	111	ŧ	
			- 3		1					55	511	Ŷ	ŧŧ	Ť	11	Ś	\$\$	55	- 55	5	5 5	5	÷÷	ŧŧ	11	ŧ	f f	1	ţţ	55	11	4	-
								9700		33	211	1	11	1	11	ł	11	33	- 3 3		11	1	11	11	E	H	ŦŦ	1	11	13			
										11	111	1	11	1	11	1	11	11	1	1	11	1	11	11	1		11	1	11	11		1	
			_			-				11		1	11	1	11	1	11	11	11	1	55	5	51		11	11	11	11	11	11	1	1.5	
+							_			11		1	11	1	11	1	11	11	- 11		1 1	1	11	11	1		11	1	11	11	111	1 1	
+	-				-	-	_			11		II.	LE	1	11	1	H	11	- 11	- {	11	1	H	H	11	t t	11		ł ł	11		1	
+	-				-	-	_	9750		11	11	11	11	I J	11	1	13	11	1	1	21	1	f E	UĮ	£1	E E	Į Į	1]]		1		
+				5							11	15	55	5	55	3]]	11				11	15	55	5	1	£ 3	FJ]]	1	T	F	
T										11	11	11	11	1	11	1	11	11	1		1	t t	11	11	1	11	11	11	11	1			
						0				11	11	11	11	1	11	1	11	11	1		1 1	11	11	11	11	1	11	ŧŧ.	ŧŧ	4		11	
								9800		- + +	1	H	11	1	{ }	-	11	11	-++	+	5 5	1	H	H	1	1	11	H	11	1	1	-	-
					_						11	11	11	1		ŧ	11		1	11	1	11	11	11	ł		5		11	1			
+				<u></u>		+ +	_			44	11	ŧŧ	‡ ‡	¢	\$ \$	\$	ŧŧ.	11	1	F (11	11	11	11	ţ	11	4 1	14	\$ \$	1	11	1	
+						+ +	_			£\$	ŧŧ.	11	1,1	11	22	1.	11	11	1	1	11	11.	1	Ħ	Į.	11	1	11	11	1.	ţţ.	11	
+				5	-	-	_			11		1	11	1	55	1	11	11	1	3	5 1	1	1	11	5	1	11	1	11	1	1		
+	-						_	9850		{ { { { } {	111	1	11	11	11	1	11	11	11	ł	[]	1	H	11	11		11	E.	łł	11	11	I	
+										2 2	11	ţ	11	11	11	1	11	11		1	11	\$		11	11	1	ţį	1	ţį	2 2	1	1	
				3						33	33	55	33	5	22.2	3 }	33	37	55	31	3	55	33	33	1	35	3	53	3	55	55	57	
				1						11	11	11	11		1	11	11	1	(]	1	1	11	11	11	1	1	1	(]	1	11	11	11	
-								9900		{ }	11	11	4 4	1	1	1	11	1	11	11	1	11	11	11	1	\$ \$	1	11	ţ	11	11	11	
-			-	<u></u>	-	-					11	11	4 4	+	1.	1	11	t	11	11	1	4	11	łł	+		1 1	11	11	4	11	łł	
+				-	_	+ +				11	11	H	11	1	11	ł	łŧ	H	E	E (1 1	ł	łł	₹₹	1	1	22	1	ŧŧ	1	1	E	
+					-	-	_			11	H		łł	1	11	1	11	11	1	1	11		łł	H	1	Ł	11	H	11	1	11		
+				1		-				11	EE	1	H	11	11	4	ιŧ	11	ŧ	1	1	11	ŧŧ	łł	1	1	11	ł	łł	1	11		
-						1	_	9950		11	11:	11	11	1 1	11	+	11	11	11	1	11	11	11	11	1		11	11	t t	1	11		

Fig. 26.38 Final presentation for a list of caliper curves

26.3 Multiarm64(32).exe

This program will read in LAS data from a Multi-Arm service and create a single pass in a Warrior database. This pass will not only contain the curves found in the LAS data, but will also create a 180 point VDL curve by interpolating between each of the Multi-Arm caliper readings. This program also contains a viewer that can display a 3 dimensional view of a section of the Multi-Arm data. The program is located at "C:\Program Files\Scientific Data Systems\Bin"

26.3.1 Importing Multi-Arm Data

The first step is to import the Multi-Arm data in to a Warrior database. Use the build button "Import from LAS" to select the LAS file to import.

_AS file name		Import from LAS
C:\ProgramData\Warrior\Data\5	55_R.las	
Presentation File		Edit Presentation
PROBED60.prs	Edit Presentation	
Borehole Image presentation file (required for 3D viewer)	Create VDL
probed60.bhf		·
Output database:/field/well/run/p	ass [Start Plot
Output curves		
Base caliper name	MULTIARM	Help
Offset between each caliper	5.0	
Caliper units	in 💌	
VDL output name	imagmap	
Input is radii, convert to diam	ieters	
		Close

FIG:26.39 LAS Multiarm Caliper

26.3.2 Caliper Presentation

The presentation file will be embedded in the database as the presentation to be used when the data is plotted. This can be edited later.

Select the Las File

Select The Presentation file (Probed60.prs)

Select the output database Select an existing database or type in a new database name. Fill in the field/well/run portion of the dataset. The name of the pass will always be the same as the LAS file name. Set the offset between calipers to show all the calipers in one track

Type the "Base Caliper Name" (MULTIARM)

Type the VDL output name (imagmap)

If you just have LAS then select import from LAS. If you have the database select create VDL

26.3.3 Output curves

The program will search through the Multi-Arm LAS data for caliper curves that start with this name – i.e. ARM1, ARM2, etc. It uses these names to create the 180 point interpolation for the 3-D view. The offset between each caliper is automatically applied to the presentation file to display the individual arm data. An offset of 0 would put all of the arm curves on top of each other which may make it difficult to see responses of individual curves. The VDL output name is the name of the curve that will contain the interpolation of the caliper data. This curve will contain 180 data points for each depth sample.

🖔 Warrior for MultiArm Calip	er	×	 Analysis (Control of Analysis) (Analysis)
LAS file name		Import from LAS	have ready the database
C:\Warrior\Data\Pass1.las			
Presentation file		Edit Presentation	Colord MDL 37
multiarm.prs			Select VDL if the database
Output database:/field/well/run/p	ass	Create VDL 🔸	is ready
NEWDATABASE:/field/well/run	/Pass1		
Output curves		 Start Plot	
Base caliper name	AM	Start Plot	
Offset between each caliper	0.50		
VDL output name	INSIDE	Help	
Input is radii, convert to diar	neters		
1. 		Close	

FIG: 26.40 Set up Multi-Arm Caliper

Start the process to convert the LAS to BD It takes long time for example to produce 1Gb .

Input	Files to read:			Clear List
	c:\programdata	a\warrior\data\555_r.la	es 💌	Add Files
Options	One log for e Merge all file			Heading 🔽 Plot Job 🔽
	Log Format:	ROBED60.prs		Select File
	Filter List: (0	ptional)		Select File
~ · · ·		Options		10
Output	Warrior databas	e file name:		
	C:\ProgramData	Warrior\Data\555m.	db	Select File
	particular and a state of the s	ell and run names:		
	/field/well/run1.	/pass1		Select Path
Status	Path = field/we Step: 0.02000 f Initializing		∖555_r.las	
	11000			-

FIG: 26.41 Warrior Data Import

Name	Plot	Offset		Presentation	
field/well/run1/pass1/R01/1	Yes	0.0	m.		B
field/well/run1/pass1/R02/1	Yes	5.0	=	Base caliper name	R
field/well/run1/pass1/R03/1	Yes	10.0	-	H Constant	
field/well/run1/pass1/R04/1	Yes	15.0	1	Pick first ca	aliper name
field/well/run1/pass1/R05/1	Yes	20.0			1.5
field/well/run1/pass1/R06/1	Yes	25.0		Offset	5.0
/field/well/run1/pass1/R07/1	Yes	30.0		onsoc	Teres.
/field/well/run1/pass1/R08/1	Yes	35.0			
field/well/run1/pass1/R09/1	Yes	40.0		Re-cre	ate list
field/well/run1/pass1/R10/1	Yes	45.0			
field/well/run1/pass1/R11/1	Yes	50.0		VDL output name	imagmap
/field/well/run1/pass1/R12/1	Yes	55.0		VDL output name	Imaginap
/field/well/run1/pass1/R13/1	Yes	60.0	-		
< III	×			Cancel	ОК
ck first caliper name	<u> </u>	1			
ck first caliper name MAXI MaxR MEAN MEDI MINI MINI					
ck first caliper name MAXI MaxR MEAN MEDI MINI MinR R01					
K first caliper name MAXI MaxR MEDI MINI MINI MinR R01 R02					
ck first caliper name MAXI MaxR MEAN MEDI MINI MinR R01					

FIG: 26.42 Selecting Caliper Name Once the system reads through the LAS file it will prompt you to select a caliper name, browse the list until you find the applicable mnemonic.

LAS file name	Import from LAS
C:\ProgramData\Warrior\Data\555_R.Jas	
Presentation File	P. 10 P.
PROBED60.prs	Edit Presentation
Borehole Image presentation file (required for 3D viewe	r)
probed60.bhf] Create VDL
Output database:/field/well/run/pass	
555m:/field/well/run1/pass1	Start Plot
Output curves	
Base caliper name R	Help
Offset between each caliper 5.0	
Caliper units in 👻	
VDL output name imagmap	
Input is radii, convert to diameters	
Creating VDL	

FIG 26.43 Creating VDL

Once it has completed the process the system will open the resulting file with interactive plot using the presentation selected earlier.

26.3.4 Edit Presentation

See section 6